Describing isotropic and anisotropic out-of-plane deformations in thin cubic materials by use of Zernike polynomials.

نویسندگان

  • Chih-Hao Chang
  • Mireille Akilian
  • Mark L Schattenburg
چکیده

Isotropic and anisotropic out-of-plane deformations induced by thin-film residual stress on thin cubic materials are studied. By transforming the compliance tensor, an analytical expression can be derived for the biaxial stiffness modulus for all directions in any given cubic crystal plane. A modified Stoney's equation, including both isotropic and anisotropic terms, can be formulated to predict the anisotropic out-of-plane deformation. The isotropic and anisotropic deformations are then described using the Zernike polynomials U21 and U22, respectively. Experimental results from (100) and (110) silicon wafers confirm the model by quantitatively comparing the changes in Z21 and Z22 coefficients due to thin-film stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulations of Indentation at Continuum and Atomic Levels

The main goal of this work is to determine values of elastic constants of orthotropic, transversely isotropic and cubic materials through indentation tests on thin layers bonded to rigid substrates. Accordingly, we first use the Stroh formalism to provide an analytical solution for generalized plane strain deformations of a linear elastic anisotropic layer bonded to a rigid substrate, and inden...

متن کامل

Velocity Modeling in a Vertical Transversely Isotropic Medium Using Zelt Method

In the present paper, the Zelt algorithm has been extended for ray tracing through an anisotropic model. In anisotropic media, the direction of the propagated energy generally differs from that of the plane-wave propagation. This makes velocity values to be varied in different directions. Therefore, velocity modeling in such media is completely different from that in an isotropic media. The vel...

متن کامل

Analytical solution of the contact problem of a rigid indenter and an anisotropic linear elastic layer

We use the Stroh formalism to study analytically generalized plane strain deformations of a linear elastic anisotropic layer bonded to a rigid substrate, and indented by a rigid cylindrical indenter. The mixed boundary-value problem is challenging since the a priori unknown deformed indented surface of the layer contacting the rigid cylinder is to be determined as a part of the solution of the ...

متن کامل

Analysis of Plane Waves in Anisotropic Magneto-Piezothermoelastic Diffusive Body with Fractional Order Derivative

In this paper the propagation of harmonic plane waves in a homogeneous anisotropic magneto-piezothermoelastic diffusive body with fractional order derivative is studied. The governing equations for a homogeneous transversely isotropic body in the context of the theory of thermoelasticity with diffusion given by Sherief et al. [1] are considered as a special case. It is found that three types of...

متن کامل

Accountability of Modern Adiabatic Connection-Based Double-Hybrids Constructed from Cubic and Quadratic Integrand Functions for Dipole Polarizabilities of Water Nanoclusters

In this work, we dissect the performance of  two modern Perdew-Burke-Ernzerhof (PBE)-based double-hybrid (DH) density functionals to predict the isotropic and anisotropic polarizabilities of water nanoclusters (H2O)n [n = 2-6]. The considered models include the cubic integrand (CI) and quadratic integrand (QI) functions as well as the spin-opposite-scaled...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 45 3  شماره 

صفحات  -

تاریخ انتشار 2006